Abstract
Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is close to being separable (separability requires that all columns of the input matrix belongs to the cone spanned by a small subset of these columns). Since then, several algorithms have been designed to handle this subclass of NMF problems. In particular, Bittorf, Recht, R\'e and Tropp (`Factoring nonnegative matrices with linear programs', NIPS 2012) proposed a linear programming model, referred to as Hottopixx. In this paper, we provide a new and more general robustness analysis of their method. In particular, we design a provably more robust variant using a post-processing strategy which allows us to deal with duplicates and near duplicates in the dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.