Abstract

The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the adoption of an ecosystem approach. In this perspective, we propose a theoretical management framework that deals jointly with three issues: (i) ecosystem dynamics, (ii) conflicting issues of production and preservation, and (iii) robustness with respect to dynamics uncertainties. We consider a discrete-time two-species dynamic model, where states are biomasses and where two controls act as harvesting efforts of each species. Uncertainties take the form of disturbances affecting each species growth factors and are assumed to take their values in a known given set. We define the robust viability kernel as the set of initial species biomasses such that at least one harvesting strategy guarantees minimal production and preservation levels for all times, whatever the uncertainties. We apply our approach to the anchovy-hake couple in the Peruvian upwelling ecosystem. We find that accounting for uncertainty sensibly shrinks the deterministic viability kernel (without uncertainties). We comment on the management implications of comparing robust viability kernels (with uncertainties) and the deterministic one (without uncertainties).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.