Abstract
With the ever-increasing installation of large-capacity ultrahigh-voltage direct current (UHVdc) links, the “strong dc link and weak ac network” issue has become prominent for many regional grids in China. The transmission expansion planning (TEP) problem of such grids has been facing a significant challenge to cope with the coordination between the UHVdc links and the ultrahigh/high voltage alternating current (UHVac/HVac) network. To handle this issue, this article proposes a multistage robust TEP (RTEP) model of ultrahigh-voltage ac–dc hybrid grids. This model explicitly takes into account multiple types of uncertainties, i.e., credible contingencies occurring in the ac network, large power imbalances due to the UHVdc bipole blocking, as well as the long-/short-term uncertainty. Wasserstein metric is used to reformulate the uncertainty set and the worst-case constraints. A column-and-constraint generation based solution approach is developed in order to ensure tractability of the RTEP model. The effectiveness of the proposed RTEP is verified by numerical testing on a practical large-scale power grid.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have