Abstract

In this paper, we investigate the possibility to suppress interference in wideband multiple-input multiple-output radar. The idea is to employ tunable filters at the transmitter and the receiver sides, and to derive filter coefficients that result in optimal transmitted signals from a system performance point of view, for a given radar scenario. The system performance is measured in signal-to-interference-and-noise ratio (SINR) at the receiver output, from which the filter properties are derived. The focus is to suppress active jamming interference, and especially deceptive jamming interference. We discuss two ways to derive the transmit and the receive filters. Each procedure utilizes two different power constraints related to the transmit filters. To incorporate imperfections in the given scenario, a robust extension to the design problem is proposed. Two different robust methods are evaluated: one that utilizes a Taylor series expansion of the SINR, and one that exploits a worst-case SINR maximization. Numerical validation illustrates the possibility to suppress interference without actually forming a spatial null in the direction towards interference, and the necessity to design transmit filters that are robust to uncertainties in the given scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.