Abstract

This study develops an adaptive dynamic programming (ADP) scheme for uncertain systems to achieve the robust trajectory tracking. In this framework, the augmented state is first established via combining the tracking error and reference trajectory, where the robust tracking control problem can be resolved using the regulation control strategy. Then, the robust control problem of uncertain system can be represented as an optimal control problem of nominal system, which provides a new pathway to address the robust control problem. To realize the optimal control, the derived Hamilton–Jacobi–Bellman equation (HJBE) is solved by training a critic neural network (CNN). Finally, two innovative critic learning techniques are suggested to calculate the unknown NN weights, where the convergence of NN weights can be guaranteed. Simulations are carried out to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.