Abstract
State estimation from limited sensor measurements is ubiquitously found as a common challenge in a broad range of fields including mechanics, astronomy, and geophysics. Fluid mechanics is no exception — state estimation of fluid flows is particularly important for flow control and processing of experimental data. However, strong nonlinearities and spatio-temporal high degrees of freedom of fluid flows cause difficulties in reasonable estimations. To handle these issues, neural networks (NNs) have recently been applied to the fluid flow estimation instead of conventional linear methods. The present study focuses on the capability of NNs to various fluid flow estimation problems from a practical viewpoint regarding robust training. Three types of unsteady laminar and turbulent flows are considered for the present demonstration: 1. square cylinder wake, 2. turbulent channel flow, and 3. laminar to turbulent transitional boundary layer. We utilize a convolutional neural network (CNN) to estimate velocity fields from sectional sensor measurements. To assess the practicability of the CNN models, physical quantities required for the input and robustness against lack of sensors are investigated. We also examine the effectiveness of several considerable approaches for model training to gain more robustness against the lack of sensors. The knowledge acquired through the present study in terms of effective training approaches can be transferred towards practical machine learning in fluid flow modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.