Abstract
This work aims to design a neural network-based fractional-order backstepping controller (NNFOBC) to control a multiple-input multiple-output (MIMO) quadrotor unmanned aerial vehicle (QUAV) system under uncertainties and disturbances and unknown dynamics. First, we investigated the dynamic of QUAV composed of six inter-connected nonlinear subsystems. Then, to increase the convergence speed and control precision of the classical backstepping controller (BC), we design a fractional-order BC (FOBC) that provides further degrees of freedom in the control parameters for every subsystem. Besides, designing control is a challenge as the FOBC requires knowledge of accurate mathematical model and the physical parameters of QUAV system. To address this problem, we propose an adaptive approximator that is a radial basis function neural network (RBFNN) included in FOBC to fix the unknown dynamics problem which results in the new approach NNFOBC. Furthermore, a robust control term is introduced to increase the tracking performance of a reference signal as parametric uncertainties and disturbances occur. We have used Lyapunov's theorem to derive adaptive laws of control parameters. Finally, the outcoming results confirm that the performance of the proposed NNFOBC controller outperforms both the classical BC , FOBC and a neural network-based classical BC controller (NNBC) and under parametric uncertainties and disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.