Abstract

This research presents a novel algorithm for robust topology optimization of continuous structures under material and loading uncertainties by combining an evolutionary structural optimization (ESO) method with an extended finite element method (XFEM). Conventional topology optimization approaches (e.g. ESO) often require additional post-processing to generate a manufacturable topology with smooth boundaries. By adopting the XFEM for boundary representation in the finite element (FE) framework, the proposed method eliminates this time-consuming post-processing stage and produces more accurate evaluation of the elements along the design boundary for ESO-based topology optimization methods. A truncated Gaussian random field (without negative values) using a memory-less translation process is utilized for the random uncertainty analysis of the material property and load angle distribution. The superiority of the proposed method over Monte Carlo, solid isotropic material with penalization (SIMP) and polynomial chaos expansion (PCE) using classical finite element method (FEM) is demonstrated via two practical examples with compliances in material uncertainty and loading uncertainty improved by approximately 11% and 10%, respectively. The novelty of the present method lies in the following two aspects: (1) this paper is among the first to use the XFEM in studying the robust topology optimization under uncertainty; (2) due to the adopted XFEM for boundary elements in the FE framework, there is no need for any post-processing techniques. The effectiveness of this method is justified by the clear and smooth boundaries obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.