Abstract

This paper studied the proportional-integral (PI) control problems of stochastic Markovian jump systems (MJSs) with uncertain parameters. Under complete access to the system states, the PI controller design procedure turns to static output feedback control problem that make the closed-loop dynamics of this class of uncertain MJSs be robustly stochastically stable. A sufficient condition on the existence of PI controller is presented and proved by means of linear matrix inequality techniques. The presented results are extended to the case when the system states are not accessible. In order to make the relative equations approximate with a satisfactory precision, we described the problem as a semidefinite programming one via disciplined convex optimization. Simulation results illustrate the validity of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.