Abstract
This paper investigates the robust stability of discrete-time singular systems involving nonlinear disturbance and mixed time delays. The mixed time delays are comprised of both discrete and distributed delays. The interval of discrete time delays can be divided into several subintervals, firstly. Then, in terms of linear matrix inequality (LMI), a suitable state feedback controller is designed for discrete-time singular systems with nonlinear disturbance and mixed time delays, and the overall closed-loop system is regular, causal and mean square asymptotically stable. Numerical examples are provided to show the usefulness and effectiveness of the proposed methods, and the results derived from our approaches are less conservative than existing ones. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.