Abstract
In this paper, the Takagi–Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Cohen–Grossberg type bidirectional associative memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by using LMI optimization algorithms to guarantee the asymptotic stability of uncertain Cohen–Grossberg BAM neural networks with time varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.