Abstract
This paper deals with the delay-dependent asymptotic stability analysis problem for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying interval delays and Markovian jumping parameters by Takagi–Sugeno (T–S) fuzzy model. The nonlinear delayed BAM neural networks are first established as a modified T–S fuzzy model in which the consequent parts are composed of a set of Markovian jumping BAM neural networks with time-varying interval delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite-state space. The new type of Markovian jumping matrices Pk and Qk are introduced in this paper. The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A new delay-dependent stability condition is derived in terms of linear matrix inequality by constructing a new Lyapunov–Krasovskii functional and introducing some free-weighting matrices. Numerical examples are given to demonstrate the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.