Abstract

In this paper, a class of nonlinear p-Laplace diffusion BAM Cohen-Grossberg neural networks (BAM CGNNs) with time delays is investigated. In the case of p>1 with p≠2, the authors construct novel Lyapunov functional to overcome the mathematical difficulties of nonlinear p-Laplace diffusion time-delay model with parameter uncertainties, deriving the LMI-based robust stability criterion applicable to computer MATLAB LMI toolbox and deleting the boundedness of the amplification functions. And in the case of p=2, LMI-based sufficient conditions are also inferred for robust input-to-state stability of reaction-diffusion Markovian jumping BAM CGNNs with the event-triggered control, which is different from those of many previous related literature. In particular, the role of diffusion can be reflected in newly acquired criteria. Finally, numerical examples verify the effectiveness of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.