Abstract

The primary purpose of this study was to apply the nonlinear autoregressive neural network to model the long-term records of monthly global price of bananas from January 1990 to November 2020. The development of the optimal architecture for the nonlinear autoregressive neural network requires determination of time delays, the number of hidden neurons, and an efficient training algorithm. Through training of the nonlinear autoregressive neural network models, the prediction performance of the models was evaluated by its mean squared error value, the average squared difference between the observed and predicted values. In this study, the empirical results revealed that the NAR-BR model with 13 neurons in the hidden layer and 6 time delays provided the best performance at its smaller mean squared error value and yielded higher accuracy than the NAR-LM model with 12 neurons in the hidden layer and 4 time delays and NAR-SCG model with 12 neurons in the hidden layer and 6 time delays. Understanding past global price of bananas is important for the analyses of current and future global price of bananas changes. In order to sustain these observations, research programs utilizing the resulting data should be able to improve our understanding and narrow projections of future global price of bananas significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call