Abstract

Conditions for robust input-output stability of barrier-based model predictive control of linear systems with linear and convex nonlinear (hard or soft) constraints are established through the construction of integral quadratic constraints (IQCs). The IQCs can be used to determine sufficient conditions for global closed-loop stability. In particular, conditions for robust stability can be obtained in the presence of unstructured model uncertainty. IQCs with both static and dynamic multipliers are developed and appropriate convex searches for the multipliers are presented. The effectiveness of the robust stability analysis is demonstrated through an illustrative numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.