Abstract

The maximum likelihood linear regression (MLLR) technique is widely used in speaker adaptation due to its effectiveness and computational advantages. When the adaptation data are sparse, MLLR performance degrades because of unreliable parameter estimation. In this paper, a robust MLLR speaker adaptation approach via weighted model averaging is investigated. A variety of transformation structures is first chosen and a general form of maximum likelihood (ML) estimation of the structures is given. The minimum description length (MDL) principle is applied to account for the compromise between transformation granularity and descriptive ability regarding the tying patterns of structured transformations with a regression tree. Weighted model averaging across the candidate structures is then performed based on the normalized MDL scores. Experimental results show that this kind of model averaging in combination with regression tree tying gives robust and consistent performance across various amounts of adaptation data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.