Abstract

Hearing loss may disqualify many people from leading a normal life, though the majority do not make use of hearing aids. This is because most hearing aids on the market cannot automatically adapt to the changing acoustical environment the user faces daily. This paper focuses on the development of an automatic sound classifier for digital hearing aids that aims to enhance listening comprehension when the user goes from one sound environment to another. Given the strong complexity constraints of these devices, reducing the number of signal-describing features which feed the automatic classifier is of great importance and becomes a challenging topic. Thus, the use of genetic algorithms with restricted search is explored for the mentioned feature selection. In an effort to evaluate its performance, the algorithm is compared with a standard unconstrained genetic algorithm and with sequential methods. The restricted search driven by the implemented genetic algorithm performs better than both the sequential methods and unconstrained genetic algorithms. It thus allows a subset of signal-describing features with lower cardinality to be selected. This may permit these selected features to be programmed on the digital signal processor that the hearing aid is based on, and to make efficient use of its limited computational facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.