Abstract
Spatiotemporal fractionation schemes for photon radiotherapy have recently arisen as a promising technique for healthy tissue sparing. Because spatiotemporally fractionated treatments have a characteristic pattern of delivering high doses to different parts of the tumor in each fraction, uncertainty in patient positioning is an even more pressing concern than in conventional uniform fractionation. Until now, such concerns in patient setup uncertainty have not been addressed in the context of spatiotemporal fractionation. A stochastic optimization model is used to incorporate patient setup uncertainty to optimize spatiotemporally fractionated plans using expected penalties for deviations from prescription values. First, a robust uniform reference plan is optimized with a stochastic optimization model. Then, a spatiotemporal plan is optimized with a constrained stochastic optimization model that minimizes a primary clinical objective and constrains the spatiotemporal plan to be at least as good as the uniform reference plan with respect to all other objectives. A discrete probability distribution is defined to characterize the random setup error occurring in each fraction. For the optimization of uniform plans, the expected penalties are computed exactly by exploiting the symmetry of the fractions, and for the spatiotemporal plans, quasi-Monte Carlo sampling is used to approximate the expectation. Using five clinical liver cases, it is demonstrated that spatiotemporally fractionated treatment plans maintain the same robust tumor coverage as a stochastic uniform reference plan and exhibit a reduction in the expected mean BED of the uninvolved liver. This is observed for a spectrum of probability distributions of random setup errors with shifts in the patient position of up to 5mm from the nominal position. For probability distributions with small variance in the patient position, the spatiotemporal plans exhibit an 8-30% reduction in expected mean BED in the healthy liver tissue for shifts up to 2.5mm and reductions of 5-25% for shifts up to 5mm. In the presence of patient setup uncertainty, spatiotemporally fractionated treatment plans exhibit the same robust tumor coverage as their uniformly fractionated counterparts and still retain the benefit in sparing healthy tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.