Abstract
In this paper, a robust DOA estimation scheme based on sparse Bayesian learning (SBL) for non-circular signals in impulse noise and mutual coupling (MC) is proposed. Firstly, the Toeplitz property of the MC matrix is used to eliminate the effect of array MC, and the array aperture is extended by using the properties of the non-circular signal. To eliminate the effect of impulse noise, the outlier part of the impulse noise is reconstructed together with the original signal in the signal matrix, and the DOA coarse estimation is obtained by balancing the accuracy and efficiency of parameter estimation using the alternating SBL update algorithm. Finally, a one-dimensional search is used in the vicinity of the searched spectral peaks to achieve a high-precision DOA estimation. The effectiveness and robustness of the algorithm for dealing with the above errors are demonstrated by extensive simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.