Abstract

Direction of arrival (DOA) estimation is an essential and fundamental part of array signal processing, which has been widely used in radio monitoring, autonomous driving of vehicles, intelligent navigation, etc. However, it remains a challenge to accurately estimate DOA for multiple-input multiple-output (MIMO) radar in impulsive noise environments. To address this problem, an off-grid DOA estimation method for monostatic MIMO radar is proposed to deal with non-circular signals under impulsive noise. In the proposed method, firstly, based on the property of non-circular signal and array structure, a virtual array output was built and a real-valued sparse representation for the signal model was constructed. Then, an off-grid sparse Bayesian learning (SBL) framework is proposed and further applied to the virtual array to construct novel off-grid sparse model. Finally, off-grid DOA estimation was realized through the solution of the sparse reconstruction with high accuracy even in impulsive noise. Numerous simulations were performed to compare the algorithm with existing methods. Simulation results verify that the proposed off-grid DOA method enables evident performance improvement in terms of accuracy and robustness compared with other works on impulsive noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call