Abstract
<abstract> <p>Sign language (SL) recognition for individuals with hearing disabilities involves leveraging machine learning (ML) and computer vision (CV) approaches for interpreting and understanding SL gestures. By employing cameras and deep learning (DL) approaches, namely convolutional neural networks (CNN) and recurrent neural networks (RNN), these models analyze facial expressions, hand movements, and body gestures connected with SL. The major challenges in SL recognition comprise the diversity of signs, differences in signing styles, and the need to recognize the context in which signs are utilized. Therefore, this manuscript develops an SL detection by Improved Coyote Optimization Algorithm with DL (SLR-ICOADL) technique for hearing disabled persons. The goal of the SLR-ICOADL technique is to accomplish an accurate detection model that enables communication for persons using SL as a primary case of expression. At the initial stage, the SLR-ICOADL technique applies a bilateral filtering (BF) approach for noise elimination. Following this, the SLR-ICOADL technique uses the Inception-ResNetv2 for feature extraction. Meanwhile, the ICOA is utilized to select the optimal hyperparameter values of the DL model. At last, the extreme learning machine (ELM) classification model can be utilized for the recognition of various kinds of signs. To exhibit the better performance of the SLR-ICOADL approach, a detailed set of experiments are performed. The experimental outcome emphasizes that the SLR-ICOADL technique gains promising performance in the SL detection process.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.