Abstract

Electric drive system with directly coupled traction motor and two-speed transmission is a good choice for electric vehicles because of the potential in energy efficiency improvement and motor size reduction. Here, a control hierarchy of the electric powertrain has been applied, which comprises an optimal shift schedule at entire driving cycles as well as torque and speed control of the traction motor at the certain shift process. Firstly, the energy-saving shift schedule is investigated by dynamic programming methods. Then, bench tests of the integrated motor-transmission system are conducted. The oscillation of driveline and unsatisfied speed regulation of the traction motor are observed in the experiment results, which will deteriorate the shift performance. Therefore, an anti-jerking robust controller is designed to attenuate the vibration of the powertrain and a robust speed controller is proposed to enhance the speed synchronisation capability of the traction motor. Simulation results indicate that the obtained shift schedule is effective to improve the energy efficiency and the robust shift process control can enhance the drive ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.