Abstract

In this paper we present a robust speed control strategy for an induction motor under field orientation. The control framework employed properly represents the induction motor state-space model and its inherent variations, which are treated as structured uncertainties. Applying an /spl Hscr//sub /spl infin//, optimization methodology on this framework we derive a stabilizing controller to meet design objectives and then robust stability and performance against such variations are checked by using /spl mu/-analysis. No on-line tuning is required for the parameters of the derived controller, which is the dynamic system responsible to keep the rotor flux orientation as well as the speed regulation at design levels, irrespective of the motor operating points. A general methodology arose from the usage of the proposed strategy and simulated experiments showed satisfactory results for the robust speed control of an induction motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.