Abstract
In this paper, we propose a robust framework for building extraction in visible band images. We first get an initial classification of the pixels based on an unsupervised presegmentation. Then, we develop a novel conditional random field (CRF) formulation to achieve accurate rooftops extraction, which incorporates pixel-level information and segment-level information for the identification of rooftops. Comparing with the commonly used CRF model, a higher order potential defined on segment is added in our model, by exploiting region consistency and shape feature at segment level. Our experiments show that the proposed higher order CRF model outperforms the state-of-the-art methods both at pixel and object levels on rooftops with complex structures and sizes in challenging environments.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have