Abstract

Abstract Topological optimization finds a material density distribution minimizing a functional of the solution of a partial differential equation (PDE), subject to a set of constraints (typically, a bound on the volume or mass of the material). Using a finite elements discretization (FEM) of the PDE and functional we obtain an integer programming problem. Due to approximation error of the FEM discretization, optimization problem becomes mesh-depended and possess false, physically inadequate optimums, while functional value heavily depends on the fineness of discretization scheme used to compute it. To alleviate this problem, we propose regularization of given functional by error estimate of the FEM discretization. This regularization provides robustness of solutions and improves obtained functional values as well. While the idea is broadly applicable, in this paper we apply our method to the heat conduction optimization. Problems of this type are of practical importance in design of heat conduction channels, heat sinks and other types of heat guides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.