Abstract
Abstract Nitrogen is one of the most abundant chemical elements on the Earth and plays an important role in global environmental change. Leading Earth system models include coupled carbon and nitrogen cycle modules of varying complexity, but the INM RAS climate model family has not yet included an explicit N-cycle description. This paper presents a parameterization of the terrestrial N-cycle based on a simplification of the JULES-CN model, adapted for coupled use with the INM-CM land C-cycle module. Numerical simulations were carried out with a standalone carbon cycle model with nitrogen feedback disabled and enabled versions for the period 1850–2100. The simulated global pools show good agreement with results of other models with an implemented N-cycle. Taking into account the N-limitation of the C-cycle, the modelled dynamics of total carbon storage in terrestrial ecosystems from 1850 to the mid-20th century is specified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Russian Journal of Numerical Analysis and Mathematical Modelling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.