Abstract
Despite its history as a developmental and evolutionary model organism, gene expression analysis in the large milkweed bug, Oncopeltus fasciatus, has rarely been explored using quantitative real-time PCR. The strength of this method depends greatly on the endogenous controls used for normalization, which are lacking for the milkweed bug system. Here, to fill in this gap in our knowledge, we validated the stability of a set of ten candidate reference genes identified from the O. fasciatus transcriptome, and did so upon exposure to a dietary toxin, a cardiac glycoside, and across four different exposure periods. To increase robustness against gDNA contaminants, genome resources were used to design intron-bridging primers. A comprehensive stability validation by the Bestkeeper, Normfinder, geNorm and comparative ΔCt methods identified ef1a and tubulin as the most stable genes across treatments and time points, whereas 18S rRNA was the most unstable. However, accounting for the temporal scale indicated that time point confined normalizers might enable higher quantification accuracy for treatment comparison. Overall this study demonstrates: (i) a robust RT-qPCR primer design approach is possible for non-model organisms where genome annotation is often incomplete, and (ii) the importance of detailed reference gene stability exploration in multifactorial experimental designs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have