Abstract
A new robust recursive least-squares (RLS) adaptive filtering algorithm that uses a priori error-dependent weights is proposed. Robustness against impulsive noise is achieved by choosing the weights on the basis of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> norms of the crosscorrelation vector and the input-signal autocorrelation matrix. The proposed algorithm also uses a variable forgetting factor that leads to fast tracking. Simulation results show that the proposed algorithm offers improved robustness as well as better tracking compared to the conventional RLS and recursive least-M estimate adaptation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.