Abstract
A robust recursive least-squares (RLS) adaptive filter against impulsive noise is proposed for the situation of an unknown desired signal. By minimizing a saturable nonlinear constrained unsupervised cost function instead of the conventional least-squares function, a possible impulse-corrupted signal is prevented from entering the filter’s weight updating scheme. Moreover, a multi-step adaptive filter is devised to reconstruct the observed “impulse-free” noisy sequence, and whenever impulsive noise is detected, the impulse contaminated samples are replaced by predictive values. Based on simulation and experimental results, the proposed unsupervised robust recursive least-square adaptive filter performs as well as conventional RLS filters in “impulse-free” circumstances, and is effective in restricting large disturbances such as impulsive noise when the RLS and the more recent unsupervised adaptive filter fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.