Abstract
We describe the use of Bayesian regularized artificial neural networks (BRANNs) in the development of QSAR models. These networks have the potential to solve a number of problems which arise in QSAR modeling such as: choice of model; robustness of model; choice of validation set; size of validation effort; and optimization of network architecture. The application of the methods to QSAR of compounds active at the benzodiazepine and muscarinic receptors is illustrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have