Abstract

Industrial robots play an increasingly important role in a growing number of fields. Since the breakdown of a single robot may have a negative impact on the entire process, predictive maintenance systems have gained importance as an essential component of robotics service offerings. The main shortcoming of such systems is that features extracted from a task typically differ significantly from the learnt model of a different task, incurring false alarms. In this paper, we propose a novel solution based on transfer learning which addresses a well-known challenge in predictive maintenance algorithms by passing the knowledge of the trained model from one task to another in order to prevent the need for retraining and to eliminate such false alarms. The deployment of the proposed algorithm on real-world datasets demonstrates that the algorithm can not only distinguish between tasks and mechanical condition change, it further yields a sharper deviation from the trained model in case of a mechanical condition change and thus detects mechanical issues with higher confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.