Abstract
This paper is concerned with the problem of passivity analysis for a class of Cohen–Grossberg fuzzy bidirectional associative memory (BAM) neural networks with time varying delay. By employing the delay fractioning technique and linear matrix inequality optimization approach, delay dependent passivity criteria are established that guarantees the passivity of fuzzy Cohen–Grossberg BAM neural networks with uncertainties. The passivity condition is expressed in terms of LMIs, which can be easily solved by various convex optimization algorithms. Finally, a numerical example is given to illustrate the effectiveness of the proposed result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.