Abstract

Recently, acoustic communication employing orbital angular momentum (OAM) opens another avenue for efficient data transmission in aquatic environments. Current topological charge (TC) detection of OAM beams relies on the orthogonality among different-order OAM beams. However, such strategy requires measurements of the complete azimuthal acoustic pressure, which inevitably reduces the efficiency and increases the bit error rate (BER). To address these challenges, this study proposes a modified dynamic modal decomposition (DMD) method by partially sampling the acoustic field for precise TC detection. Numerical simulations confirm the accuracy of this approach in extracting single or multiple TCs magnitudes within a partially sampled acoustic field. We theoretically compare the performance of the modified DMD approach with conventional orthogonal decoding method. Simulation results indicate that our modified DMD scheme exhibits lower BER under the same noise interference and is more robust to the array misalignment. This research introduces an efficient demodulation solution for acoustic OAM communication, offering potential benefits for simplifying receiver array design and enhancing long-distance underwater data transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.