Abstract
This paper considers a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who is uncertain about the model parameters. We assume that the surplus of the insurance company can be allocated to the financial market consisting of one risk-free asset and one risky asset whose price process satisfies square root factor process. Under the objective of maximizing the expected utility of the terminal surplus, by adopting the technique of stochastic control, closed-form expressions of the robust optimal strategy and the corresponding value function are derived. The verification theorem is also provided. Finally, by presenting some numerical examples, the impact of some parameters on the optimal strategy is illustrated and some economic explanations are also given. We find that the robust optimal reinsurance strategies under the generalized mean–variance premium are very different from that under the variance premium principle. In addition, ignoring model uncertainty risk will lead to significant utility loss for the AAI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.