Abstract

In least costly experiment design, the optimal spectrum of an identification experiment is determined in such a way that the cost of the experiment is minimized under some accuracy constraint on the identified parameter vector. Like all optimal experiment design problems, this optimization problem depends on the unknown true system, which is generally replaced by an initial estimate. One important consequence of this is that we can underestimate the actual cost of the experiment and that the accuracy of the identified model can be lower than desired. Here, based on an a-priori uncertainty set for the true system, we propose a convex optimization approach that allows to prevent these issues from happening. We do this when the to-be-determined spectrum is the one of a multisine signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.