Abstract

In recent years, video surveillance has become an integral part of computer vision research, addressing a variety of challenges in security, memory management and content extraction from video sequences. This paper introduces the Robust Object Detection using Fire Hawks Optimizer with Deep Learning (ROD-FHODL) technique, a novel approach designed specifically for video surveillance applications. Combining object detection and classification the proposed technique employs a two-step procedure. Utilizing the power of the Mask Region-based Convolutional Neural Network (Mask-RCNN) for object detection, we optimize its hyperparameters using the Fire Hawks Optimizer (FHO) algorithm to improve its efficacy. Our experimental results on the UCSD dataset demonstrate the significant impact of the proposed work. It achieves an extraordinary RUNNT of 1.34[Formula: see text]s on the pedestrian-1 dataset, significantly outperforming existing models. In addition, the proposed system surpasses in accuracy, with a pedestrian-1 accuracy rate of 97.45% and Area Under the Curve (AUC) values of 98.92%. Comparative analysis demonstrates the superiority of the proposed system in True Positive Rate (TPR) versus False Positive Rate (FPR) across thresholds. In conclusion, the proposed system represents a significant advancement in video surveillance, offering advances in speed, precision and robustness that hold promise for enhancing security, traffic management and public space monitoring in smart city infrastructure and other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call