Abstract
Object detection and segmentation algorithms evolved significantly in the last decade. Simultaneous object detection and segmentation paved the way for real-time applications such as autonomous driving. Detection and segmentation of (partially) flooded roadways are essential inputs for vehicle routing and traffic management systems. This paper proposes an automatic floodwater detection and segmentation method utilizing the Mask Region-Based Convolutional Neural Networks (Mask-R-CNN) and Generative Adversarial Networks (GAN) algorithms. To train the model, manually labeled images with urban, suburban, and natural settings are used. The performances of the algorithms are assessed in accurately detecting the floodwater captured in images. The results show that the proposed Mask-R-CNN-based floodwater detection and segmentation outperform previous studies, whereas the GAN-based model has a straightforward implementation compared to other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.