Abstract

Recently, the issue of electromagnetic pollution has become increasingly prominent. Flexible polymer films with various conductive fillers are preferred to address this problem due to their highly efficient and durable electromagnetic interference (EMI) shielding performance. However, their applications are restricted by the unbalanced and insufficient electromagnetic wave absorption and shielding capabilities, as well as the weak interlayer bonding force. In this work, robust flexible multifunctional AgNW/MXene/NiCo-C (AMN) films are fabricated by hierarchical casting assembly and an encapsulated conductive fabric strategy. The synergistic effect of the conductive-absorption integrated sandwich core fabric and the conductive encapsulation layer collaborate to provide excellent absorption-dominated EMI shielding (EMI SEmax = 89.12dB with an ultralow reflectivityvalue of 0.19) and Joule heating (a high temperature of 103.5°C at 4.5V) performances. Besides, AMN films with embedded fabrics as a reinforcement structure achieved enhanced peel (1.97Nmm-1) and tensile (7.85MPa) strengths through an interface enhancement process (plasma and pre-immersion treatments). In conclusion, this paper proposes a feasible paradigm to prepare flexible multifunctional conductive films, which demonstrate tremendous potential for applications in the wearable electronics and aerospace fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.