Abstract
Lightweight and flexible multifunctional materials with excellent electromagnetic interference (EMI) shielding and Joule heating performances are highly demanded for smart and wearable electronics. In this work, polyacrylonitrile (PAN) nanofiber films are prepared by electrospinning and then coated with polypyrrole (PPy) via vapor deposition, yielding a continuous three-dimensional (3D) conductive network of PAN@PPy. Ti3C2Tx MXene nanosheets with high electrical conductivity are sprayed on the PAN@PPy film to enhance its EMI shielding performance. The as-prepared PAN@PPy/MXene films (55 μm thick) exhibit a high EMI shielding effectiveness (SE) of 32 dB, achieving an extraordinarily high normalized surface-specific SE (SSE/t) of up to 17 534.5 dB cm2 g-1 from 8.2 to 12.4 GHz; simultaneously, the temperatures of PAN@PPy/MXene films can be driven up to 170.5 °C at an input voltage of 4 V, and exhibit fast-response, stable, and long-term Joule heating performance. The high SSE/t and efficient Joule heating ability of the films bode potential applications in smart and wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.