Abstract
We study a robust version of the maximum capture facility location problem in a competitive market, assuming that each customer chooses among all available facilities according to a random utility maximization (RUM) model. We employ the generalized extreme value (GEV) family of models and assume that the parameters of the RUM model are not given exactly but lie in convex uncertainty sets. The problem is to locate new facilities to maximize the worst-case captured user demand. We show that, interestingly, our robust model preserves the monotonicity and submodularity from its deterministic counterpart, implying that a simple greedy heuristic can guarantee a (1−1/e) approximation solution. We further show the concavity of the objective function under the classical multinomial logit (MNL) model, suggesting that an outer-approximation algorithm can be used to solve the robust model under MNL to optimality. We conduct experiments comparing our robust method to other deterministic and sampling approaches, using instances from different discrete choice models. Our results clearly demonstrate the advantages of our robust model in protecting the decision-maker from worst-case scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.