Abstract

An M-estimate adaptive filter for robust adaptive filtering in impulse noise is proposed. Instead of using the conventional least-square cost function, a new cost function based on an M-estimator is used to suppress the effect of impulse noise on the filter weights. The resulting optimal weight vector is governed by an M-estimate normal equation. A recursive least M-estimate (RLM) adaptive algorithm and a robust threshold estimation method are derived for solving this equation. The mean convergence performance of the proposed algorithm is also analysed using the modified Huber function (a simple but good approximation to the Hampel's three-parts-redescending M-estimate function) and the contaminated gaussian noise model. Simulation results show that the proposed RLM algorithm has better performance than other recursive least squares (RLS) like algorithms under either contaminated gaussian or alpha-stable noise environment. The initial convergence, steady-state error, robustness to system change and computational complexity are also found to be comparable to the conventional RLS algorithm under gaussian noise alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.