Abstract

AbstractIn this paper, we consider different aspects of robust 1‐median problems on a tree network with uncertain or dynamically changing edge lengths and vertex weights which can also take negative values. The dynamic nature of a parameter is modeled by a linear function of time. A linear algorithm is designed for the absolute dynamic robust 1‐median problem on a tree. The dynamic robust deviation 1‐median problem on a tree with n vertices is solved in O(n2 α(n) log n) time, where α(n) is the inverse Ackermann function. Examples show that both problems do not possess the vertex optimality property. The uncertainty is modeled by given intervals, in which each parameter can take a value randomly. The absolute robust 1‐median problem with interval data, where vertex weights might also be negative, can be solved in linear time. The corresponding deviation problem can be solved in O(n2) time. © 2001 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.