Abstract

Load forecasting, as a crucial component of the electricity market, plays a significant role in ensuring the secure operation and rational planning of the power grid. However, as the power system becomes increasingly intricate, the demands on load forecasting techniques have escalated. Consequently, to mitigate the errors in short-term load forecasting (STLF) caused by uncertainty factors and to accommodate daily forecasting under abnormal electricity load conditions, this paper proposes a hybrid load forecasting model that combines an improved Secondary Variational Mode Decomposition (SVMD) algorithm with the Informer model. Employing electricity load data from the Panama context, the data is divided into four distinct experimental cases. The outcomes manifest that in contrast to the baseline model, the proposed approach engenders a minimal reduction of 15.08%, 12.95%, and 13.21% in Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), respectively. Furthermore, supplementary experimental results demonstrate that the model exhibits strong robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.