Abstract
Hierarchical models are popular in many applied statistics fields including Small Area Estimation. One well known model employed in this particular field is the Fay–Herriot model, in which unobservable parameters are assumed to be Gaussian. In Hierarchical models assumptions about unobservable quantities are difficult to check. For a special case of the Fay–Herriot model, Sinharay and Stern [2003. Posterior predictive model checking in Hierarchical models. J. Statist. Plann. Inference 111, 209–221] showed that violations of the assumptions about the random effects are difficult to detect using posterior predictive checks. In this present paper we consider two extensions of the Fay–Herriot model in which the random effects are assumed to be distributed according to either an exponential power (EP) distribution or a skewed EP distribution. We aim to explore the robustness of the Fay–Herriot model for the estimation of individual area means as well as the empirical distribution function of their ‘ensemble’. Our findings, which are based on a simulation experiment, are largely consistent with those of Sinharay and Stern as far as the efficient estimation of individual small area parameters is concerned. However, when estimating the empirical distribution function of the ‘ensemble’ of small area parameters, results are more sensitive to the failure of distributional assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.