Abstract

Accurate localization holds paramount importance across many applications within the context of smart cities, particularly in vehicular communication systems, the Internet of Things, and Integrated Sensing and Communication (ISAC) technologies. Nonetheless, achieving precise localization remains a persistent challenge, primarily attributed to the prevalence of non-line-of-sight (NLOS) conditions and the presence of uncertainties surrounding key wireless transmission parameters. This paper presents a comprehensive framework tailored to address the intricate task of localizing multiple nodes within ISAC systems significantly impacted by pervasive NLOS conditions and the ambiguity of transmission parameters. The proposed methodology integrates received signal strength (RSS) and time-of-arrival (TOA) measurements as a strategic response to effectively overcome these substantial challenges, even in situations where the precise values of transmitting power and temporal information remain elusive. An approximation approach is judiciously employed to facilitate the inherent non-convex and NP-hard nature of the original estimation problem, resulting in a notable transformation, rendering the problem amenable to a convex optimization paradigm. The comprehensive array of simulations conducted within this study corroborates the efficacy of the proposed hybrid cooperative localization method by underscoring its superior performance relative to conventional approaches relying solely on RSS or TOA measurements. This enhancement in localization accuracy in ISAC systems holds promise in the intricate urban landscape of smart cities, offering substantial contributions to infrastructure optimization and service efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call