Abstract

Inverse heat conduction analysis provides an efficient approach for estimating the thermophysical properties of materials, the boundary conditions, or the initial conditions. In this paper, two-dimensional transient nonlinear inverse heat conduction problems are investigated, for estimating time- and space-dependent boundary heat flux, as well as the temperature-dependent thermal conductivities. Modifications are carried out to extend the previous one-dimensional inversion algorithm to solve the two-dimensional transient nonlinear heat conduction problem, to overcome the frequently occurring divergence issues, and to improve the stability of the inversion algorithm. Boundary-only measurements are used as additional information, and a dimensionless objective function is adopted. In the direct problem, formulations for solutions to the two-dimensional transient nonlinear heat conduction problem are derived and validated. Numerical examples show that the inversion algorithm is effective, efficient, accurate, and robust, for recovering multiple parameters, with and without a functional form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call