Abstract

The volumetric flow rate in rivers is essential to analyze hydrological processes and at the same time it is one of the most difficult variables to measure. Image based discharge measurements possess several advantages, one of them being that the sensor (camera) is not in contact with the water, it can be placed safe of floods, its mounting position is very flexible and there is no need of expensive structures/constructions. During the last years several image-based methods for measuring the surface velocity in rivers and canals have been proposed and successfully tested under different conditions. However, these methods have been used and configured to perform well under the particular conditions of a single recording or single site. The objective of this paper is to present a system which has reached a Technology Readiness Level (TRL) 9. The system is able to measure the volumetric flow under different conditions day and night and all year long, the system is able to perform in rivers or canals of different sizes and flow velocities and under different conditions of visibility. In addition, the system is capable of measuring the river stage optically without the need of a stage, but it can also integrate external level sensor. Important for a wide set of customers, the system must be able to interface with the various common signal input and output standards, such as 4–20 mAmp, modbus, SDI-12, ZRXP, and even with customer specific formats. Additionally, the developed technology can be implemented as an edge or as a cloud system. The cloud system only needs a camera with Internet connection to send videos to the cloud where they are processed, while the edge systems have a processing unit installed at the site where the processing is done. This paper presents the key aspects needed to move from prototype with TRL5-7 and lower toward the presented field proven system with a TRL 9.

Highlights

  • There is a need of data to optimize strategies allowing to cope with droughts and floods

  • If these velocity profile results are collected over some time, here we present a statistic over 2 months, the velocity profile can be monitored and questions relevant for site maintenance can be asked; does the velocity profile stay constant for a given water level? Does the velocity profile change? If the change is persistent, does it point to a bed mobilization? In Figures 6C,D we present results to indicate how this may look

  • If the DK Internet connection, the DischargeDataHub can be used to modify the main parameters of the DK remotely, without the need of going to the field

Read more

Summary

Introduction

There is a need of data to optimize strategies allowing to cope with droughts and floods. Over the last two decades different image-processing approaches were developed in order to measure the surface velocity and volumetric flow rate or discharge in rivers and streams. The flexibility offered by image-based flow monitoring demonstrated the potential of these technologies to step in to complement traditional flow monitoring methods. This technology evolved rapidly and has been applied to a variety of image footage obtained from stationary surveillance cameras (Hauet et al, 2008) or mobile systems (Jodeau et al, 2008; Dramais et al, 2011). The versatility and potential offered by image processing for flow monitoring became clearer. Surface velocity and stream discharge was measured from video footage acquired with unmanned aerial vehicles (Detert and Weitbrecht, 2015; Tauro et al, 2016b) or with smart-phones (Lüthi et al, 2014; Carrel et al, 2019)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call