Abstract

SummaryA Robust Nonlinear Fuzzy Decentralized Controller ( RNFDC) is proposed to improve the overall robustness and tracking ability of a VSC‐HVDC link. The studied system is considered as composed by two overlapping nonlinear subsystems. The nonlinear interaction between the two subsystems is treated as a disturbance rejection problem by fuzzy control techniques. First, the Takagi Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system. Next, new stability conditions for a generalized class of uncertain HVDC systems are derived from robust control techniques based on Linear Matrix Inequalities (LMIs). The design method employs the so‐called Parallel Distributed Compensation (PDC) to obtain RNFDC gains based on LMIs.The efficiency and robustness of the proposed controllers are analytically proven and tested through validation simulations. The main contributions of this paper are: (i) resilience: in case of failure of one converter or loss of measures or controls, the control of the other converter is not affected; (ii) robustness is improved in order to provide good responses in case of network variations and HVDC line parameters changes; (iii) fuzzy techniques are adopted to handle nonlinearities and changes of operating conditions. The proposed RNFDC is compared with Fuzzy H Decentralized State Feedback Control ( NFDC) and Linear Decentralized Control ( LDC) in simulation to illustrate the control synthesis and its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.