Abstract

This paper deals with the problem of stability analysis and stabilization via Takagi-Sugeno (T-S) fuzzy models for nonlinear time-delay systems. First, Takagi-Sugeno (T-S) fuzzy models and some stability results are recalled. To design fuzzy controllers, nonlinear time-delay systems are represented by Takagi-Sugeno fuzzy models. The concept of parallel-distributed compensation (PDC) is employed to determine structures of fuzzy controllers from the T-S fuzzy models. LMI-based design problems are defined and employed to find feedback gains of fuzzy controller and common positive definite matrices P satisfying stability a delay-dependent stability criterion derived in terms of Lyapunov direct method. Based on the control scheme and this criterion, a fuzzy controller is then designed via the technique of PDC to stabilize the nonlinear time-delay system and the H∞ control performance is achieved in the mean time. Finally, the proposed controller design method is demonstrated through numerical simulations on the chaotic and resonant systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.