Abstract

AbstractThis paper proposes a backup attitude estimation scheme for small fixed‐wing unmanned aerial vehicles (UAVs) in the event of gyroscopic failure. The attitude is propagated in terms of 3 degrees‐of‐freedom (DoF) aircraft dynamics. The errors in attitude propagation are updated using indirect attitude information obtained from accelerations as sensed by onboard accelerometers and a global positioning system (GPS) receiver. In the event of gyroscopic failure, large uncertainties are introduced into the attitude propagation model. Such uncertainties in states and parameters are modeled as norm‐bound uncertainties and a discrete‐time robust extended Kalman filter (REKF) is implemented to estimate the attitude of the UAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.